Quaternions as rotations in 3D
Just as a unit circle in the complex plane can be used to describe a rotation in one axis, quaternions using 3 imaginary numbers describe a rotation in 3 dimensions. According to Euler's rotation theorem , any complex rotation of any vector $\mathbf{p}\in \mathbb{R}^3$ about any axes can be replaced by a single rotation about the $\mathbf{v}=[v_x,v_y,v_z] $ by an angle $\theta$. Using quaternions, the rotation of a vector $\mathbf{p}$ can be represented by multiplication: \begin{equation}\mathbf{p}'=\mathbf{q}\mathbf{p}\mathbf{q}^{-1}=\mathbf{q}\mathbf{p}\mathbf{q}^*\label{eq:rotation}\end{equation} where vector $\mathbf{p}$ is treated as a pure quaternion - $\mathbf{p}= [0,p_x,p_y,p_z]$, and quaternion $\mathbf{q}$ in trygonmetric form is: \begin{equation} \mathbf{q}=\cos{\frac{\theta}{2}}+[v_xi,v_yj,v_zk]\sin{\frac{\theta}{2}}\label{eq:trigonometric form written out}\end{equation} It can now be seen that the imaginary part of the quaternion can be treated as the vect...